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ABSTRACT

This paper contains a critical comparison of estimators minimizing Wahba's

loss function. Some new results are presented for the QUaternion ESTimator

(QUEST) and EStimators of the Optimal Quatemion (ESOQ and ESOQ2) to

avoid the computational burden of sequential rotations in these algorithms. None

of these methods is as robust in principle as Davenport's q method or the

Singular Value Decomposition (SVD) method, which are significantly slower.

Robustness is only an issue for measurements with widely differing accuracies,
so the fastest estimators, the modified ESOQ and ESOQ2, are well suited to

sensors that track multiple stars with comparable accuracies. More robust forms

of ESOQ and ESOQ2 are developed that are intermediate in speed.

INTRODUCTION

In many spacecraft attitude systems, the attitude observations are naturally represented as unit vectors.

Typical examples are the unit vectors giving the direction to the sun or a star and the unit vector in the

direction of the Earth's magnetic field. Thi_ paper will consider algorithms for estimating spacecraft attitude

from vector measurements taken at a single time, which are known as "single-frame" methods or "point"

methods, in contrast to filtering methods that employ information about spacecraft dynamics. Almost all

single-frame algorithms are based on a problem proposed in 1965 by Grace Wahba I. Wahba's problem is to

find the orthogonal matrix A with determinant +1 that minimizes the loss function

L(A)-- ½E a,lb,- Arf'. (1)

where {bi} is a set of unit vectors measured in a spacecraft's body frame, {r A are the corresponding unit

vectors in a reference frame, and {a_} are non-negative weights. In this paper we choose the weights to be

inverse variances, a_ = cr_-2, in order to relate Wahba's problem to Maximum Likelihood Estimation 2. This

choice differs from that of Wahba and many other authors, who assumed the weights normalized to unity.

It is possible and has proven very convenient to write the loss function as

L(A) = Ao - tr(AB T)

with

and

_0 = Eiai

B = __._a,b,r 7 .

Now it is clear that L(A) is minimized when the trace, tr(ABr), is maximized.
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This has a close relation to the orthogonal Procrustes problem, which is to find the orthogonal matrix A
that is closest to B in the sense of the Frobenius (or Euclidean, or Schur, or Hilbert-Schmidt) norm s

IIMII 'F,Y_,,,j = tr(MMr). (5)
Now

IIA- BII'-F= IIAII-'F+ 11811: - 2tr(ABT) = 3 + IIBII"_- 2tr(ABV) , (6)

so Wahba's problem is equivalent to the orthogonal Procrustes problem with the proviso that the
determinant of A must be +1.

The purpose of this paper is to give an overview in a unified notation of algorithms for solving Wahba's

problem, to provide accuracy and speed comparisons, and to present two significant enhancements of

existing methods. The popular QUaternion EStimator (QUEST) and EStimators of the Optimal Quaternion

(ESOQ and ESOQ2) algorithms avoid singularities by employing a rotated reference system. A method

introduced in this paper uses the diagonal elements of the B matrix to determine a desirable reference

system, avoiding expensive sequential computations. Also, tests show that a first-order expansion in the

loss function is adequate, avoiding the need for iterative refinement of the loss function, and motivating the
introduction of new first-order versions of ESOQ and ESOQ2, which are at present the fastest known first-

order methods for solving Wahba's problem.

FIRST SOLUTIONS OF WAHBA'S PROBLEM

J. L. Fan-ell and J. C. Stuelpnagel 4, R. H. Wessner _, J. R. Velman 6, J. E. Brock v, R. Desjardins, and

Wahba presented the first solutions of Wahba's problem. Farrell and Stuelpnagel noted that any real square

matrix, including B, has the polar decomposition

B = WR, (7)

where W is orthogonal and R is symmetric and positive semidefinite. Then R can be diagonalized by

R = VD V T, (8)

where V is orthogonal and D is diagonal with elements arranged in decreasing order. The optimal attitude

estimate is then given by

Aopt = WVdiag[1 1 detW] Vr. (9)

In most cases, detW is positive and Aopt= W, but this is not guaranteed. Wessner proposed the solution

Aopt= (Br)-I(BTB) w_= B(BTB) -1'7. (10)

This has the disadvantage of requiring B to be non-singular, which means that a minimum of three vectors

must be observed, although it is well known that two vectors are sufficient to determine the attitude.

SINGULAR VALUE DECOMPOSITION (SVD) METHOD

This method has not been widely used in practice, because of its computational expense, but it yields

valuable analytic insights 8'9. The matrix B has the Singular Value DecompositionS:

B = UEV T= U diag[E, Zu Z33] vTs (11)

where U and V are orthogonal, and the singular values obey the inequalities Z_l > Y-_2> Y'33 >-0. Then

tr(ABV)=tr(AVdiag[Zn E_2 Z,33]uT)=tr(UTA V diag[Z11 Zz2 Z33]). (12)

The trace is maximized, consistent with the constraint det A = 1, by

UrAopt V = diag[l 1 (detU)(detV)] , (13)

which gives the optimal attitude matrix

Aog = U diag[1 1 (detU)(det V)] V "r. (14)



TheSVDsolutioniscompletelyequivalent to the original solution by Farrell and Stuelpnagel, since

Eq. (14) is identical to Eq. (9) with U= WV. The difference is that robust SVD algorithms exist now 3:°.

In fact, computing the SVD is one of the most robust numerical algorithms.

It is convenient to define

st = X t,, s,- Z 22, and s 3- (detU)(detV) X 33, (15)

so that st >-s2 ->Is_l.We will loosely refer to st, s2, and s3 as the singular values, although the third singular

value of B is actually ls31.It is clear from Eq. (I 1) that redefinition of the basis vectors in the reference or

body frame affects Vor U, respectively, but does not affect the singular values.

The covariance of the rotation angle error vector in the body frame is given by

P = Udiag[(s 2 +s3) -I (s 3 +st) -t (s t +sz)-l]U r. (16)

DAVENPORT'S q METHOD

Davenport provided the first useful solution of Wahba's problem for spacecraft attitude determination 1t'12

He parameterized the attitude matrix by a unit quaternion u't4

as

[ q 1 r e sin(¢_ / 2)']

q=Lq.d=Lcos(¢,,2)j ,

A(q) = (q_ -[ql + 2qq T - 2q4[q x] .

(17)

with

where K is the symmetric traceless matrix

S- I trB z I (20)K = z-r trB

B23 - 932 ]

S B + B "r and [ =- z =- B3,-BuI _,a,b, xr,. (21)

L
It is easy to prove that the optimal unit quaternion is the normalized eigenvector of K with the largest

eigenvalue, i.e., the solution of

Kqo _ - Ar_qo_,. (22)

With Eqs. (2) and (19), this gives the optimized loss function as

L(Aor_) = Ao - Am,x . (23)

Very robust algorithms exist to solve the symmetric eigenvalue problem 3:°.

The eigenvalues of the K matrix, Am_ -- At > 22 > /l 3 >_24 = A.a n, are related to the singular values by u

At=st+s2+s3, 2_=st-s2-s3, 2s=-st+s2-s3, A4=-st-s2+s3. (24)

The eigenvalues sum to zero because K is traceless. There is no unique solution if the two largest

eigenvalues of K are equal, or s2+ s3 = 0. This is not a failure of the q method; it means that the data aren't

sufficient to determine the attitude uniquely. Equation (16) shows that the covariance is infinite in this case.
This is expected, since the covariance should be infinite when the attitude is unobservable.

The rotation axis e and angle ¢ will be useful later. Since A(q) is a homogenous quadratic function of q, we
can write

tr(AB "r) = qrKq (19)

(18)



QUATERNION ESTIMATOR (QUEST)

This algorithm, first applied in the MAGSAT mission in 1979, has been the most widely used algorithm

for Wahba's problem _5'_6.Equation (22) is equivalent to the two equations

[(2 ..... + trB)l- S]q = q4z (25)

'and

(2._ - trB)q 4 = qTz. (26)

Equation (25) gives

q = q_[(2 .... + trB)l - S]-_z = q4 {adj [(2max + trB)l - S]z}/det[(2.n _ + trB)l - S]. (27)

The optimal quaternion is then given by

qor, = _ ' (28)
4y- +lxl-

where

x = adj [(2m_, + tr B) I - S] z = [a I + (,71._, - tr B) S + S 2 ] z (29)

arid

y ---det[(2m_ + trB)l - S] = a(2m_ , + trB) - det S, (30)

with

a --"22_, - (trB) 2 + tr(adjS). (31)

The second form on the right sides of Eqs. (29) and (30) follows from the Cayley-Hamilton Theorem 3'_6.

These computations require knowledge of 2m_x,which is obtained by substituting Eqs. (28) and (29) into

Eq. (26), yielding:
0 = IV(2_) - ]/(2m_x -- trB) - zr[ct I + (2ma x -- trB) S + S z ] z. (32)

Substituting a and ?from Eqs. (30) and (31) gives a fourth-order equation in ,,l_, which is simply the

characteristic equation det(2,_ I - K) = 0. Shuster observed that ,,q,_, can be easily obtained by Newton-
Raphson iteration of Eq. (32) starting from 2o as the initial estimate, since Eq. (23) shows that 2m__ is very

close to ,Tto if the optimized loss function is small _5'16.In fact, a single iteration is generally sufficient. But

numerical analysts know that solving the characteristic equation is one of the worst ways to find

eigenvalues, in general, so QUEST is in principle less robust than Davenport's original q method. The

analytic solution of the characteristic equation is slower and no more accurate than the iterative solution.

Shuster provided an estimate of the covariance of the rotation angle error vector in the body frame,

P=[_'ai(l-b'br)] -l. (33)

He also showed that 2L(Ao_) obeys a Z2 probability distribution with 2no_ - 3 degrees of freedom, to a

good approximation and assuming Gaussian measurement errors, where nob_ is the number of vector

observations _7.This can often provide a useful data quality check.

The optimal quaternion is not defined by Eq. (28) if ),2 + lxl: = o. Applying the Cayley-Hamilton theorem

twice to eliminate S_and S3after substituting Eq. (29) gives, with some tedious algebra,

+lxl = (34)

where I//(2) is the quartic function defined implicitly by Eq. (32). It follows from the discussion following

Eq. (15) that d_//d2 is invariant under rotations, since the coefficients in the polynomial I//(2) depend

only on the singular values of B, and d _ / d2 must be nonzero for the Newton-Raphson iteration for 2m_

tO be successful 2°. The singular condition y2 + ix12= 0 is thus seen to be equivalent to y= 0, which means

that (qor_)4 = 0 and the optimal attitude represents a 180* rotation. Shuster devised the method of sequential

rotations to avoid this singular case _-_8.



REFERENCE FRAME ROTATIONS

The (q,,_,,)_ = 0 singularity occurs because QUEST does not treat the four components of the quaternion on
an equal basis. Davenport's q method treats the four components symmetrically and is nonsingular, but

some other methods have singularities similar to that in QUEST. These singularities can be avoided by

solving for the attitude with respect to a reference coordinate frame rotated from the original frame by 180 °

about the x, y, or z coordinate axis. That is, we solve for one of the quaternions

q_ - q ®Le'J=LqJ®I_J=]q4e'-q×e'Joq4 L -q. e, for/= 1, 2, 3,
(35)

where e, is the unit vector along the i_ coordinate axis. We use the convention of Reference 14 for

quaternion rotations, rather than the historic convention. These products are trivial to implement by merely

permuting and changing signs of the of the quaternion components. For example,

qt = [ql, qz, q3, q4 ]r ® [1, O, 0, 0] T = [q4, - q3, q:' - ql ]r. (36)

The equations for the inverse transformations are the same, since a 180 ° rotation in the opposite direction

has the same effect. These rotations are also easy to implement on the input data, since a rotation about

axis i, for example, simply changes the signs of the jth and kth columns of the B matrix, where {i,j, k} is

a permutation of { 1, 2, 3 }.

The original QUEST implementation performed sequential rotations, one axis at a time, until an acceptable

reference coordinate system was found. It is clearly preferable to avoid the computations required by

sequential rotations by choosing a single desirable rotation as early in the computation as possible. The

optimal rotated coordinate frame could be found by investigating the components of an a priori quaternion,

which is always available in a star tracker application, since a fairly good a priori attitude estimate is needed

to identify the stars in the tracker's field of view. If the fourth component has the largest magnitude, no

rotation is performed, while a rotation about the ith axis is performed if the ith component has the largest

magnitude. Then Eq. (36) or its equivalent shows that the fourth component of the rotated quaternion will

have the largest magnitude. This magnitude must be at least 1/2, but may not be any greater, because it is

possible for all the components of a unit quaternion to have magnitude 1/2.

The need for a priori attitude information can be avoided by substituting information from the B matrix. We

can expand K in terms of its eigenvectors and eigenvalues as

h A v h VA(qu)+Ar(qu)- ItrA(qu) wu ] , (37)K = y_ uququ = ¼_._Au(4quq_ -/) = .1.'_ A v tr a(q_,)

where qu is the normalized eigenvector of K corresponding to the eigenvalue Xu and

IA(q,_)23-A(qu)32]

Wu - I a(qu)3' - A(qu)'3 |" (38)

La(qu),2 - A(q#)2_ j

The second step in Eq. (37) follows from the fact that the eigenvalues sum to zero, and the third step
follows from Eq. (18). We use Greek indices to label different quaternions, to avoid confusion with Latin

indices used to label quaternion components. Comparison of Eqs. (37) and (20) establishes the identity t9

4

B = ¼y_ _ua(q_,). (39)
,u=l

From Eqs. (18) and (39), we have
4

trB = _L,,;I.u(qu)] ' (40)
.u=l



and
4

2Bkk = Y_2u (qu)_ + trB. (41)

These relations are interesting because the discussion following Eq. (15) makes it clear that the eigenvalues

are not affected by a redefinition of the basis vectors in the body or reference frames, although the quaternion

is affected by such a redefinition. Suppose now that we find the maximum of {Bll,B2z,B33,trB}. If trB is

the maximum, and if _,,_ is well separated from the other eigenvalues of the K matrix, Eqs. (40) and (41)

suggest that the fourth component of qor, has the largest magnitude, so no rotation is necessary. If B, is the

maximum, the same considerations suggest that the ith component of qo_ has the largest magnitude, so a

rotation about the ith axis is performed. This will tend to put the largest component of qov, in the fourth
position in the rotated frame, which means that the rotation angle in the rotated frame is small, and the

180 ° rotation singularity is avoided. The reference system rotation is easily "undone" by Eq. (36) or its

equivalent after the optimal quaternion has been computed.

It will be useful for future reference to note that Eqs. (18), (21), and (39) give

4

z = _ A,u (qu), q_," (42)
#=I

Using the orthonormality of the eigenvectors and Eq. (40), we find that

4

Izl = _ (qu)]- (trB)2" (43)
u=I

and thus that

[z[ < max 3. = max (3`max,--3`min)" (44)
-- p=l,.--,4 #

VAST OPTIMAl, ATTITUDE MATRIX (FOAM)

The SVD decomposition of B gives a convenient representation for adjB, detB, and IIt,'ll"F.These can be used

to write the optimal attitude matrix as 2°'2l

aop, = (tC2m._x- det B)-1[0¢ + I1 11 F)8+ 3.m_adjB T - BBTB], (45)

where

- (3. x -11 12 )• (46)

It's important to note that all the quantities in Eqs. (45) and (46) can be computed without performing the
SVD of B. In this method, /]'maxis found from

3.m_=tr(aop, BT)=(KAm_x-detB)-l[(tC+ll_]2F)llt_12 F +3_,_,detB-tr(BBVBBV)], (47)

or, after some matrix algebra,

0 = -= -IIBIf ) - 83..,..det B - 4[ladjBll_. (48)

Equations (32) and (48) for _(2,_) would be numerically identical with infinite-precision computations,

but the FOAM form of the coefficients is less subject to errors arising in finite-precision computations.

The FOAM algorithm gives the convenient form for the error covariance:

P = (r-.Am__ - det B)-l(t¢l + BBr). (49)

A quaternion can be extracted from Aop,, with a cost of 13 MATLAB flops. This has two advantages: the
four-component quaternion is often preferable to the nine-component attitude matrix, and the quaternion can

be easily normalized if Aop, is not exactly orthogonal due to computational errors 22.



ESTIMATOR OF TIIE OPTIMAL QUATERNION (ESOQ or ESOQ1)

Davenport's eigenvalue equation, Eq. (22), says that the optimal quaternion is orthogonal to all the
columns of the matrix

H--K-2 ..... I, (50)

which means that it must be orthogonal to the three-dimensional subspace spanned by the columns of H.

The optimal quaternion is conveniently computed as the generalized four-dimensional cross-product of any
three columns of this matrix 232s.

Another way of seeing this result is to examine the classical adjoint of H. Representing K in terms of its

eigenvalues and eigenvectors and using the orthonormality of the eigenvectors gives, for any scalar 2,

adj(K-Al)= adj (Au-2)quq = (A v -A)(2 e -A)(A r -2)quq _, (51)
Lu=l 3 u=l

where {/._,v, p, r} is a permutation of { 1, 2, 3, 4}. Setting 2 = 2m_ ------21 causes all the terms in this sum to

vanish except the first, with the result

adj H = (22 - 2n..._,)(23 -- 2m_)(24 -- Am_)qop, qo_ (52)

Thus q,,r,tcan be computed by normalizing any non-zero column of adj H, which we denote by index k. Let
F denote the symmetric 3x3 matrix obtained by deleting the kth row and kth column from H, and let f

denote the three-component column vector obtained by deleting the kth element from the kth column of H.

Then the kth element of the optimal quaternion is given by

(qopt)k = -c det F, (53)

and the other three elements are

(qop,)l....,k-l._+l....._ = C(adj F)f, (54)

where the coefficient c is determined by normalizing the quaternion. It is desirable to let k denote the

column with the maximum Euclidean norm, which is the column containing the maximum diagonal

element of the adjoint, owing to the symmetry of H. Computing all the diagonal elements of adjH, though

not as burdensome as QUEST's sequential rotations, is somewhat expensive. It can be avoided by using the

trace of the B matrix as in QUEST. In the ESOQ case, however, no rotation is performed; we merely

choose k to be the index of the maximum element of {Bt_, B_, B33, tr B}.

The matrix F depends on the maximum eigenvalue Am_; but it is interesting to note that f does not depend

on Area_, which only appears in the diagonal elements of H. The original formulation of ESOQ used the

analytic solution of the characteristic equation 24; but the analytic formula sometimes gives complex

eigenvalues, which is theoretically impossible for a real symmetric matrix. These errors arise from

inaccurate values of the coefficients of the quartic characteristic equation, not from the solution method. It is

faster, and equally accurate, to compute 2m_, by iterative solution of Eq. (48). Equation (32) would give a
faster solution, but it would be less robust, and an even more efficient solution is described below.

First Order Update (ESOQI.1)

Test results show that higher-order updates do not improve the performance of the iterative methods,

providing motivation for developing a first-order approximation. The matrix H can be expanded to first order

in AA-A 0 --2m_, aS
H = H ° + (AA)I, (55)

where

H ° _ K-2oi.

Then

(56)

F = F ° + (AA)I, (57)



where/70isderivedfromH° in the same way that F is derived from fL Matrix identities give

adjF = adj F ° + _Jt[(tr F°)l - F ° ] (58)

and

de t F = det F ° + (z_) tr (adj F ° ), (59)

to first order in AA. The characteristic equation can be expressed to the same order as

0 = det H = (Hk° + A,_)det F- f-r.(adj F)f = H,° detF ° - frg + [HO tr(adj F °) + det F ° - frh] AA, (60)

where

g -- (adjF°)f and h = [(trF°)l - F°]f. (61)

Equation (60) is easily solved for A2 -- "t'0 - ';tm_, and then the first order quaternion estimate is given by

(qop,)_ = -c[det F ° + (,52) tr(adj F °)]

and

(62)

(63)(qopt)1,.-.,_-1,_÷1..-.,4 = C (g + h _ ).

SECOND ESTIMATOR OF THE OPTIMAL QUATERNION (ESOQ2)

This algorithm uses the rotation axis/angle form of the optimal quaternion, as given in Eq. (17).

Substituting these into Eqs. (25) and (26) gives

(Am_ -- trB) cos(¢ / 2) = z're sin(¢ / 2) (64)

and

z cos(¢ / 2) = [(_m_ + trB)I - S] e sin(¢ / 2) (65)

Multiplying Eq. (65) by (_,_x - trB) and substituting Eq. (64) gives

Me sin(¢ / 2) = 0, (66)

where

M = (2m_ - trB)[(_ma x + trB)I - S] - gz T = [m, ! m 2 ! m3]. (67)

These computations lose numerical significance if (:l.m_x -- trB) and z are close to zero, which would be the

case for zero rotation angle. We can always avoid this singular condition by using one of the sequential

reference system rotations Is-is to ensure that trB is less than or equal to zero. If we rotate the reference frame
about the ith axis, then

(trB),o,_,_ d = B,, - B_ - Ba = 2B. - trB, (68)

where {i, j, k } is a permutation of { 1, 2, 3 } and the components not marked "rotated" are defined with

respect to the unrotated reference frame. Thus no rotation is performed if trB is the minimum of

{Btt, B22, B33, trB}, while a rotation about the ith axis is performed if B, is the minimum. This will ensure

the most negative value for the trace in the rotated frame. The rotation is easily "undone" by Eq. (36) or its
equivalent after the quaternion has been computed. It follows from the orthogonality of the eigenvectors that

A.,_ < trB < Am_, (69)

Equation (40) shows that trB = 2._ if and only if qo_ is the quaternion of the identity attitude, with

cos(¢/2) = I, while trB = ,;I.m_n means that the identity quaternion is an eigenvector of K with eigenvalue

,'_n. The latter equality requires qo_ to be the quaternion of a 180 ° rotation, with cos(¢/2) = 0, since the

orthogonality of the eigenvectors means that any two of the rotation matrices A(q_,) differ by a 180 °

rotation. However, qor,tbeing the quaternion of a 180 ° rotation does not imply trB = 2,_ n , but only the
weaker condition A,m_ _<trB < ,71.2 . Thus a small value of trB is a better indicator of an attitude far from the

identity than a large value of trB is of an attitude far from a 180 ° rotation, so this procedure should be even

more reliable for avoiding singularities in ESOQ2 than in QUEST or ESOQ.



Equation(66)saysthattherotationaxisis a null vector of M. The columns of adj M are the cross products

of the columns of M:

adjM=[m_ xm 3 ! m 3 xm I im I xm2]. (70)

Because M is singular, all these columns are parallel, and all are parallel to the rotation axis e. Thus we set

e = y/[y[, (71)

where y is the column of adj M (i.e., the cross product) with maximum norm. Because M is symmetric, it

is only necessary to find the maximum diagonal element of its adjoint to determine which column to use.

The rotation angle is found from Eq. (64) or one of the components of Eq. (65). Equations (40) and (44)

show that choosing the rotated reference system that provides the most negative value of trB makes Eq. (64)

the best choice. With Eq. (71), this can be written

(A,,_ - trB)[y] cos(0 / 2) = (z. y) sin(¢ / 2), (72)

which means that there is some scalar 77 for which

cos(¢ / 2) = r/(z. y) (73)

and

sin(O/ 2) = r/(2m_ - t B)lYl. (74)

Substituting into Eq. (17) and using Eq. (71) gives the optimal quaternion as 27'28

= 1 I(2m_ - trB)y]qor. (75)

ff](_ - trB)yl2 + (z.y) 2 L z.y

Note that it is not necessary to normalize the rotation axis. ESOQ2 does not define the rotation axis

uniquely if M has rank less than two. This includes the usual case of unobservable attitude and also the case

of zero rotation angle. Requiring trB to be non-positive avoids zero rotation angle singularity, however. We

compute _ by iterative solution of Eq. (48) in the general case, as for ESOQ.

First Order Update (ESOQ2.1)

The motivation for and development of this algorithm are similar to the those of the first order update used

in ESOQ 1. i. The matrix M can be expanded to first order in AA - 20 -3.r,_, as

M = M ° + (AA)N,

where

and

0:toolM ° -=(Ao - trB)[(A o + trB)l - S] - zz "r = [m ° ! m 2 .

N - S-2A 0 1 = [n I in 2 !n3].

To this same order, we have

y - m, × m i = (m ° + niA,;I,) x (m_ + niA,;I,) = yO + p A/],,

where

o and p = m ° x nx + n, x m_.yO _ m o x mj

The maximum eigenvalue can be found from condition that M is singular; to first-order:

0=detM=(m, xmj).mk =(yO+pAR).(mO+nkAA)=y0 O+(yO.n k+ o•m k m i -p)AA, (81)

where {i, j, k} is a cyclic permutation of { 1, 2, 3 }. This is solved for AA - 3.o - 2m_, and then the attitude
estimate is found by substituting Eq. (79) and Am_ = 20 -- A2 into Eq. (75).

(76)

(77)

(78)

(79)

(80)



There is an interesting relation between the eigenvalue condition det M(2) = 0 used in ESOQ2.1 and the

condition qt(A.) = 0 used in other algorithms. Straightforward matrix algebra shows

det M(/],) = O- - tr B)" _(A). (82)

Thus det M(A) has the four roots of _(A), the eigenvalues of Davenport's K matrix, and an additional

double root at trB. Equation (40) shows that trB depends on the reference frame axes, and choosing the

reference axes maximizing -trB assures that these two spurious roots are far from the desired root at 2_.

TESTS

We test the accuracy and speed of MATLAB implementations of these methods, using simulated data. The q

and SVD methods use the functions e±g and svcl, respectively; the others use the equations in this paper.

MATLAB uses IEEE double-precision floating-point arithmetic, in which the numbers have approximately

16 significant decimal digits 29.

We analyze three test scenarios. In all these scenarios, the pointing of one spacecraft axis, which we take to

be the spacecraft x axis, is much better determined that the rotation about this axis. This is a very common

case that arises in spacecraft that point a single instrument (like an astronomical telescope) very precisely.
This is also a characteristic of attitude estimates from a single narrow-field-of-view star tracker, where the

rotation about the tracker boresight is much less well determined than the pointing of the boresight. The x

axis error and the yz error, which is the error about an axis orthogonal to the x axis and determines the x

axis pointing, are computed from an error quaternion q,,_ by writing

[qo,_ ] [% sin(q_x / 2)-] Icy z sin(_y z 12)-]

q°°=Leon,J=[ cos(O._/2) d®Lcos(C,:/2) J (83)

= I-e,, cos(¢:_/2)sin(¢_/2) + e_,_cos(0_/2)sin(C,. 12)- (e_ × e,_)sin(C:,/2)sin(0,_ / 2)]

L cos(¢_ 12) cos(¢r_ ! 2) J

where e_,= [1 0 0] "r and %_ is a unit vector orthogonal to e_,.We can always find Cx in [-Tr, _] and Cy_in

[0, _] by selecting %: appropriately. Then, since ey_ and e,, x %: form an orthonormal basis for the y-z

(or 2-3) plane, the error angles are given by

¢_ = 2 tan-I(qo_l/qe,4) (84)

and

Cy. = 2 sin-'(4q_ 2 + qe2rr3). (85)

Equations (84) and (85) would be unchanged if the order of the rotations about e_ and ey_were reversed; only

the unit vector e_ would be different.

The total error, which is the principal angle of the rotation represented by the error quaternion, is given by

cos(¢_o, _ / 2) = q_=4 = cos(¢_, ! 2) cos(¢y_ / 2) . (86)

Thus ¢,o,_ / 2 is the hypotenuse of a right spherical triangle with sides ¢_ / 2 and Cg / 2 . This is the

spherical trigonometry equivalent of taking two orthogonal components of an error vector.

First Test Scenario

The first scenario simulates a single star tracker with a narrow field of view and boresight at [1, 0, 0] r. This

is an application for which the QUEST algorithm has been widely used. We assume that the tracker is

tracking five stars at

= I 1] F0'99712l =L_o0 584j,F0"997121 b 4 = F0'9971210 , and = - 0'9S712].b, _, b2=[0.07584 j, b 3 10.07584 j b,-0.07584J

(87)



Wesimulate1000testcaseswithuniformlydistributedrandomattitudematrices,whichweusetomapthe
fiveobservationvectorstothereferenceframe.WeaddGaussianrandomnoisewithequalstandard
deviationsof6arcsecondsperaxistothereferencevectorsratherthantheobservationvectors,sothatEq.
(87)will remainvalidinthepresenceofnoise,andthennormalizethereferencevectors.

Thelossfunctioniscomputedwithmeasurementvariancesin(radians)2,sincethisresultsin 2L(Aop,)
approximatelyobeyinga,,_distribution.Theminimumandmaximumvaluesofthelossfunctioninthe
1000testrunsare0.23and12.1,respectively.Theprobabilitydistributionof thelossfunctionisplottedas
thesolidlinein Figure 1, and several values of P(Z 2 I v) for 2 '2 = 2L(Aop_) and v = 2nob_ - 3 = 7 are

plotted as circles 26.The agreement is seen to be excellent.

The estimation errors in arcseconds for the star tracker scenario are presented in Table 1, as both the RSS

(outside of parentheses) and the maximum (in parentheses) over the 1000 cases. The q method and the SVD

method should both give the truly optimal solution, since they are based on robust matrix analysis

algorithms 3'1°. The q method is taken as optimal by definition, so no estimated-to-optimal differences are

presented for that algorithm, and the differences between the SVD and q methods provide an estimate of the

computational errors of both methods. In particular, the loss function is computed exactly by both methods,

in principle, which means in practice that it is computed to about one part in l0 s . Equation (3) gives

20 = 5.9 x 109 rad -2 for this scenario, so this is the expected accuracy in double-precision machine

computations. No estimate of the loss function is provided when no update of _ is performed,

accounting for the lack of entries in the loss function column in the tables for these cases.
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Not all the decimal places exhibited are significant, since the results of 1000 different random cases would

not agree with these to more than two decimal places. The extra decimal places are shown to emphasize the

fact that although the different algorithms give results that are closer or farther from the optimal estimate,

all the algorithms provide estimates that are equally close to the true attitude. The differences between the

estimated and optimal values further show that one Newton-Raphson iteration for _ .... is always sufficient;

a second iteration provides no practical improvement in the estimate for this scenario.

Equation (33) gives the covariance for the star tracker scenario as

5

P = (6 arcsec)" [5I - _ b,b_ ]-t = diag[1565, 7.2, 7.2] arcsec 2, (88)
l=l

which gives the standard deviations of the attitude estimation errors as

o"x = _ arcsec = 40arcsec and cry_ = _ + 7.2 arcsec = 3.Sarcsec. (89)

It is apparent that this covariance estimate is quite accurate.

Second Test Scenario

The second scenario uses three observations with widely varying accuracies to provide a difficult test case

for the algorithms under consideration. The three observation vectors are

[i] = 0"070584 I and b_=

-o99 xq 1
b i = b 2

, -0.07584 ] (90)

Table 1: Estimation Errors for Star Tracker Scenario

Algorithm

Z,,_ iterations

q

SVD

0

FOAM 1

2

0

QUEST 1

2

0

ESOQ2 1

2

ESOQ2.1 1

0

ESOQ 1

2

ESOQI.I 1

RSS (max) estimated-to--optimal RSS (max) estimated-to-true

loss function x (arcsec) yz (arcsec) x (arcsec) yz (arcsec)

-- -- -- 38.41 (122.5) 3.829 (9.252)

0.4 (1.8) x 10-5 1.4 (5.6) x 10 -8 0.8 (2.9) x 10-1° 38.41 (122.5) 3.829 (9.252)

-- 0.014 (0.078) 9.7 (36) x 10-5 38.41 (122.5) 3.829 (9.252)

0.4 (1.6) x 10-5

0.4 (1.7) x 10-5

1.5 (5.6) x 10 -8

1.5 (5.6) x 104

0.015 (0.078)

26 (104) x 10 -1°

26 (88) x 10 -z°

9.6 (36) x 10 -5

38.41 (122.5)

9.7 (36) x 10 -5

38.41 (122.5)

38.41 (122.5)

3.829 (9.252)

3.829 (9.252)

3.829 (9.252)

2.5 (7.2) x 10 -5 10.1 (46) x 104 6.1 (26) x 10 -1° 38.41 (122.5) 3.829 (9.252)

2.9 (8.4) x 10 -5 11.1 (50) x 10-si 7.2 (25) x 10 -1° 38.41 (122.5) 3.829 (9.252)

0.014 (0.078) 38.41 (122.5)

0.4 (1.7) x 10 -5 1.5 (6.1) x 10-8 2.0 (10) x 10 -1° 38.4I (122.5)

0.4 (1.8) x 10 -5 1.5 (6.1) x 10-8 2.1 (11) x 10-1° 38.41 (122.5)

0.4 (1.6) x 10 -5 1.5 (5.9) x 10-s 1.9 (12) x 10 -1° 38.41 (122.5)

-- 0.015 (0.078) 9.6 (36) x 10 -s 38.41 (122.5)

0.4 (1.7) x 10 -5 1.5 (6.2) x 10-8 9.6 (39) x 10-1° 38.41 (122.5)

0.4 (1.8) x 10-5 1.5 (6.2) x 10-8 9.6 (39) x 10-1° 38.41 (122.5)

1.0(5.3) x 10 -_ 4.1 (24) x 104 7.0 (29) x 10 -1° 38.41 (122.5)

3.829 (9.252)

3.829 (9.252)

3.829 (9.252)

3.829 (9.252)

3.829 (9.252)

3.829 (9.252)

3.829 (9.252)

3.829 (9.252)



Wesimulate1000testcasesasinthestartrackerscenario,butwithGaussiannoiseof one arcsecond per

axis on the first observation, and 1° per axis on the other two. This models the case that the first

observation is from an onboard astronomical telescope, and the other two observations are from a coarse sun

sensor and a magnetometer, for example. A very accurate estimate of the orientation of the x axis is required

in such an application, but the rotation about this axis expected to be fairly poorly determined.

The minimum and maximum values of the loss function computed by the q method in the 1000 test runs

for the second scenario are 0.003 and 8.5, respectively. The probability distribution of the loss function is

plotted as the solid line in Figure 2, and several values of the Z 2 distribution with three degrees of freedom

are plotted as circles. The agreement is almost as good as the seven-degree-of-freedom case.

The estimation errors for this scenario are presented in Table 2, which is similar to Table 1 except that the

rotation errors about the x axis are given in degrees. The agreement of the q and SVD methods is virtually

identical to their agreement in the star tracker scenario, but the other algorithms show varying performance.

Equation (3) gives 20 = 8.5 × 10 t° rad -2 for this scenario, so the expected accuracy of the loss function in

double-precision machine computations is on the order of 10 -5, which is the level of agreement between the

values computed by the q and SVD methods. None of the other methods computes the loss function nearly

as accurately. This differs from the first scenario, where all the algorithms came close to achieving the

maximum precision available in double-precision arithmetic.

0 1 2 3 4 5 6 7 8 9
loss function

Figure 2: Empirical (solid line) and Theoretical (dots) Loss Function Distribution

for the Three-Degree-of-Freedom Unequal Measurement Weight Scenario



Theiterativecomputationof,_,....inQUEST,ESOQI.1,andESOQ2.I ispoor,butthishassurprisingly
littleeffectonthedeterminationof thex axis pointing. The determination of the rotation about the x axis

is adversely affected by an inaccurate computation of 2_.... however, with maximum deviations from the

optimal estimate of almost 180". The only useful results of QUEST are obtained by not performing any

iterations for ).,,_,_. The iterative computation of _...... by Eq. (48) in FOAM, ESOQ, and ESOQ2 improves

the agreement with the optimal estimate, but does not result in better agreement with the true attitude. It

seems probable that Eq. (48) provides a better estimate of 2,,_x because it deals with B directly, while the

other algorithms use the symmetric and skew parts S and z instead.

The predicted covariance in this scenario is, to a very good approximation,

P = diag[_ (1 - 0.997122 )-t deg2 1arcsec 2 , I arcsec _ ], (91)

which gives

cr_ = 9.3 deg and cry. = 1.4arcsec, (92)

in agreement with the best results in Table 2.

Third Test Scenario

The third scenario investigates the effect of measurement noise mismodeling, illustrating problems that first
appeared in analyzing data from the Upper Atmosphere Research Satellite 3°. Of course, no one would

intentionally use erroneous models, but it can be very difficult to determine an accurate noise model for real

data, and the assumption of any level of white noise is often a poor approximation to real measurement
errors. This scenario uses the same three observation vectors as the second scenario, given by Eq. (90). We

again simulate 1000 test cases, but with Gaussian white noise of 1° per axis on the first observation and

0.1 ° per axis on the other two. The estimator, however, incorrectly assumes measurement errors of 0.1 ° per

axis on all three observations, so it weights the measurements equally.

Table 2: Estimation Errors for Unequal Measurement Weight Scenario

Algorithm

2m_, iterations

q m

SVD -

0

FOAM 1

2

0

QUEST 1

2

0

ESOQ2 I

2

ESOQ2.1 1

0

ESOQ 1

2

ESOQI.I 1

RSS (max) estimated-to-optimal RSS (max) estimated-to-true

loss function x (deg) yz (arcsec) x (deg) yz (arcsec)

-- -- -- 9.5 (34) 1.42 (3.57)

1.6 (6.9) x 10-5 1.4 (8.0) x 10 -5 7.7 (24) x 10 -11

-- 1.5 (9.9) 7.9 (29) x 10-3

0.09 (0.7) 0.09 (1.I) 8.0 (26) x 10 -3

0.0007 (0.012) 0.0008 (0.013) 7.8 (29) x 10 -3

-- 1.9 (12) 0.4 (3.8) x 10-3

768 (2329) 60 (170) 2.3 (9.0) × 10-3

1796 (38501) 62 (175) 4.8 (95) × 10 -3

-- 1.5 (9.9) 1.1 (6.8) × 10 -3

0.09 (0.7) 0.09 (1.1) 1.3 (9.4) × 10 -3

0.0007 (0.012) 0.0008 (0.013) 1.1 (7.1) × 10 -3

59 (370) 39 (178) 1.5 (14) × 10 -3

1.9 (12) 4.8 (23) × 10 -3

0.09 (0.7) 0.10 (1.I) 5.3 (28) × 10 -3

0.0007 (0.012) 0.0008 (0.013) 5.2 (24) × 10 -3

327 (1727) 60 (177) 2.6 (34) x 10 -3

9.5 (34) 1.42 (3.57)

9.5 (34) 1.42 (3.57)

9.5 (34) 1.42 (3.57)

9.5 (34) 1.42 (3.57)

9.6 (34) 1.42 (3.57)

48 (90) 1.42 (3.57)

48 (91) 1.42 (3.57)

9.5 (34) 1.42 (3.57)

9.5 (34) 1.42 (3.57)

9.5 (34) 1.42 (3.57)

29 (91) 1.42 (3.57)

9.6 (34) 1.42 (3.57)

9.5 (34) 1.42 (3.57)

9.5 (34) 1.42 (3.57)

43 (90) 1.42 (3.57)



Theminimumandmaximumvaluesofthelossfunctioncomputedbytheq method in the 1000 test runs

for the third scenario are 0.07 and 453, respectively. The probability distribution of the loss function is

plotted in Figure 3. The theoretical three-degree-of-freedom distribution is not plotted, since it would be a

very poor fit to the data. More than 95% of the values of L(Ao_) are theoretically expected to lie below 4,

according to the Z _ distribution plotted in Figure 2, but almost half of the values of the loss function

plotted in Figure 3 have values greater than 50. Shuster has emphasized that large values of the loss

function are an excellent indication of measurement mismodeling or simply of bad data.

The estimation errors for this scenario are presented in Table 3, which is similar to Tables 1 and 2 except

that all the angular errors are given in degrees. The truly optimal q and SVD methods agree even more

closely than in the other scenarios. Equation (3) gives A0 = 5 x 105 rad -z for this scenario, so the expected

accuracy of the loss function in double-precision machine computations is on the order of 10 -1°, the level of

agreement between the q and SVD methods. As in the second scenario, none of the other methods computes

the loss function nearly as accurately. In the third scenario, though, the iterative computation of Zm_,works

well for all the algorithms, and both iterations improve the agreement of the loss function and attitude

estimates with the optimal values. The first order refinement is reflected in a reduction of the attitude errors,

particularly in determining the rotation about the x axis, but no algorithm is aided significantly by a

second-order update. As in the first scenario, all the algorithms with the first order update to _ perform as

well as the q and SVD methods.
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Speed

There are two caveats to make with regard to timing comparisons. First, absolute speed numbers are not

very important for ground computations, since the actual estimation algorithm is only a part of the overall
attitude determination data processing effort. Absolute speed was more important in the past, when

thousands of attitude solutions had to be computed by slower machines, which is why QUEST was so

important for the MAGSAT mission. Second, the longest computation time is more important than the

average time for a real-time computer in a spacecraft attitude control system or a star tracker, which must
finish all its required tasks in a limited time. This penalizes QUEST for real-time applications, unless we

use an a priori attitude estimate or information from the B matrix to eliminate the need for sequential
rotations, as described above.

Figures 4 and 5 show the maximum number of MATLAB floating-point operations (flops) to compute an

attitude using two to six reference vectors; the times to process more than six vectors follow the trends seen

in the figure. The inputs for the timing tests are the t,ob, normalized reference and observation vector pairs

and their nobs weights. One thousand test cases with random attitudes and random reference vectors with
Gaussian measurement noise were simulated for each number of reference vectors.

Figure 4 plots the times of the more robust methods. The break in the plots for FOAM, ESOQ, and

ESOQ2 at hobs= 3 results from using an exact solution of the characteristic equation in the two-observation

case, when det B = 0 and Eq. (48) shows that _(/]'m_,) is a quadratic function of )l,2m_.For three or more

observations, these algorithms are timed for a first-order update to ,;tm_ using Eq. (48). Additional iterations

for ,,_, are not expensive, however, costing only 11 flops each. It is clear that the q method and the SVD

method require significantly more computational effort than the other algorithms, as expected. The q method

is more efficient than the SVD method, except in the least interesting two-observation case. The other three

algorithms are much faster, with the fastest, ESOQ and ESOQ2, being nearly equal in speed.

Table 3: Estimation Errors for Mismodeled Measurement Weight Scenario

Algorithm

)._ iterations

q

SVD -

0

FOAM 1

2

0

QUEST 1

2

0

ESOQ2 1

2

ESOQ2.1 1

0

ESOQ 1

2

ESOQ 1.1 1

RSS (max) estimated-to-optimal RSS (max) estimated-to-true

loss function x (deg) yz (deg) x (deg) yz (deg)

-- -- -- 0.96 (3.62) 0.49 (1.17)

4.1 (22) x 10 -I° 3.8 (17) x 10-t2 2.3 (7.3) x 10 -14 0.96 (3.62) 0.49 (1.17)

-- 0.7 (5.9) 4.0 (21) x 10 -3 1.18 (5.42) 0.49 (1.16)

2.6 (24) 0.020 (0.33) 1.0 (11) x 10.4 0.96 (3.60) 0.49 (1.17)

0.004 (0.07) 0.4 (10) x 10.4 1.7 (35) X 10 -7 0.96 (3.62) 0.49 (1.17)

-- 0.9 (7.6) 4.3 (29) x 10 -3 1.27 (7.66) 0.49 (1.16)

2.6 (24) 0.023 (0.33) 1.1 (11) x 10.4 0.96 (3.60) 0.49 (1.17)

0.004 (0.07) 0.4 (10) x 10.4 1.7 (35) x 10 -7 0.96 (3.62) 0.49 (1.17)

-- 0.7 (5.9) 4.0 (21) x 10 -3 1.18 (5.42) 0.49 (1.16)

2.6 (24) 0.020 (0.33) 1.0 (11) x 10 .4 0.96 (3.60) 0.49 (1.17)

0.004 (0.07) 0.4 (10) x 10.4 1.7 (35) x 10 -7 0.96 (3.62) 0.49 (1.17)

2.6 (24) 0.020 (0.33) 0.6 (5.8) x 10.4 0.96 (3.60) 0.49 (1.17)

0.9 (7.6) 4.3 (29) x 10 -3 1.27 (7.66) 0.49 (1.16)

2.6 (24) 0.023 (0.33) 1.1 (11) × 10.4 0.96 (3.60) 0.49 (1.17)

0.004 (0.07) 0.4 (10) x 104 1.7 (35) x 10 -7 0.96 (3.62) 0.49 (1.17)

2.6 (24) 0.023 (0.33) 1.3 (27) x 10 -6 0.96 (3.60) 0.49 (1.17)



Figure5comparesthetimingofthefastestmethods,whichgenerallyusezerothorderandfirstorder
approximationsfor,;t......BothQUEST(I)andESOQ2.1usetheexactquadraticsolutionfor A ..... in the

two-observation case, but ESOQI. 1 uses its faster first order approximation for any number of

observations. It is clear that ESOQ and ESOQ2 are the fastest algorithms using the zeroth order

approximation for )..... and ESOQ 1.1 is the fastest of the first order methods.

CONCLUSIONS

This paper has examined the most useful algorithms for estimating spacecraft attitude from vector

measurements based on minimizing Wahba's loss function. These were tested in three scenarios, which
show that the most robust, reliable, and accurate estimators are Davenport's q method and the Singular

Value Decomposition (SVD) method. This is not surprising, since these methods are based on robust and

well-tested general-purpose matrix algorithms. The q method, which computes the optimal quaternion as the

eigenvector of a symmetric 4x4 matrix with the largest eigenvalue, is the faster of these two.

Several algorithms are significantly less burdensome computationally than the q and SVD methods. These

methods are less robust in principle, since they solve the quartic characteristic polynomial equation for the

maximum eigenvalue, a procedure that is potentially numerically unreliable. Algorithms that use the form

of the characteristic polynomial from the Fast Optimal Attitude Matrix (FOAM) algorithm performed as

well as the q and SVD methods in practice, however. The fastest of these algorithms are the EStimators of

the Optimal Quaternion, ESOQ and ESOQ2.
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Partofthespeedadvantageofthemethodstestedinthispaperoverpreviousstudiesresultsfromusingthe
informationcontainedinthediagonalelementsofB to eliminate sequential rotations in QUEST and extra

computations in ESOQ and ESOQ2. It would be equally fast, and more accurate in principle, to use an a

priori quaternion to find the best rotated reference frame. Simulations comparing the methods using the

diagonal elements of B with methods using information contained in an a priori quaternion showed equally
accurate estimates with the two approaches, however, and the former method is preferable for its generality.

All the algorithms tested perform as well as the more robust algorithms in cases where measurement

weights do not vary too widely and are reasonably well modeled. These include most of the cases for which
vector observations are used to compute spacecraft attitude, in particular the case of an attitude solution

from multiple stars. If the measurement uncertainties are not well represented by white noise, however, an

update is required, while this update can be disastrous if the measurement weights span a wide range.

The examples in the paper show that these robustness concerns are not an issue for the processing multiple

star observations with comparable accuracies, the most common application of Wahba's loss function.

Thus the fastest algorithms, the zeroth-order ESOQ and ESOQ2 and the first-order ESOQI. 1, are well suited

to star tracker attitude determination applications. In general-purpose applications where measurement

weights may vary greatly, one of the more robust algorithms may be preferred.
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